Source code for s3prl.problem.common.superb_ic

"""
The setting of Superb IC

Authors
  * Wei-Cheng Tseng 2021
  * Leo 2021
  * Leo 2022
"""

import logging
import pickle
from pathlib import Path

import pandas as pd
import torch
from omegaconf import MISSING
from torch.utils.data import Dataset

from s3prl.dataio.corpus.fluent_speech_commands import FluentSpeechCommands
from s3prl.dataio.dataset import EncodeCategories, LoadAudio
from s3prl.dataio.encoder.category import CategoryEncoders
from s3prl.dataio.sampler import FixedBatchSizeBatchSampler
from s3prl.nn.linear import MeanPoolingLinear
from s3prl.task.utterance_classification_task import (
    UtteranceMultiClassClassificationTask,
)

from .run import Common

logger = logging.getLogger(__name__)


__all__ = [
    "fsc_for_multi_classification",
    "SuperbIC",
]


[docs]def fsc_for_multi_classification( target_dir: str, cache_dir: str, dataset_root: str, n_jobs: int = 6, get_path_only: bool = False, ): """ Prepare Fluent Speech Command for multi-class classfication following :obj:`SuperbIC.prepare_data` format. The standard usage is to use three labels jointly: action, object, and location. Args: dataset_root (str): The root path of Fluent Speech Command n_jobs (int): to speed up the corpus parsing procedure """ target_dir = Path(target_dir) train_path = target_dir / f"train.csv" valid_path = target_dir / f"valid.csv" test_paths = [target_dir / f"test.csv"] if get_path_only: return train_path, valid_path, test_paths def format_fields(data_points: dict): return { key: dict( wav_path=value["path"], labels=f"{value['action']} ; {value['object']} ; {value['location']}", ) for key, value in data_points.items() } corpus = FluentSpeechCommands(dataset_root, n_jobs) train_data, valid_data, test_data = corpus.data_split train_data = format_fields(train_data) valid_data = format_fields(valid_data) test_data = format_fields(test_data) def dict_to_csv(data_dict, csv_path): keys = sorted(list(data_dict.keys())) fields = sorted(data_dict[keys[0]].keys()) data = dict() for field in fields: data[field] = [] for key in keys: data[field].append(data_dict[key][field]) data["id"] = keys df = pd.DataFrame(data) df.to_csv(csv_path, index=False) dict_to_csv(train_data, train_path) dict_to_csv(valid_data, valid_path) dict_to_csv(test_data, test_paths[0]) return train_path, valid_path, test_paths
[docs]class SuperbIC(Common):
[docs] def default_config(self) -> dict: return dict( start=0, stop=None, target_dir=MISSING, cache_dir=None, remove_all_cache=False, prepare_data=dict( dataset_root=MISSING, ), build_encoder=dict(), build_dataset=dict(), build_batch_sampler=dict( train=dict( batch_size=32, shuffle=True, ), valid=dict( batch_size=32, ), test=dict( batch_size=32, ), ), build_upstream=dict( name=MISSING, ), build_featurizer=dict( layer_selections=None, normalize=False, ), build_downstream=dict( hidden_size=256, ), build_model=dict( upstream_trainable=False, ), build_task=dict(), build_optimizer=dict( name="Adam", conf=dict( lr=1.0e-4, ), ), build_scheduler=dict( name="ExponentialLR", gamma=0.9, ), save_model=dict(), save_task=dict(), train=dict( total_steps=200000, log_step=100, eval_step=5000, save_step=250, gradient_clipping=1.0, gradient_accumulate=1, valid_metric="accuracy", valid_higher_better=True, auto_resume=True, resume_ckpt_dir=None, ), )
[docs] def prepare_data( self, prepare_data: dict, target_dir: str, cache_dir: str, get_path_only: bool = False, ): """ Prepare the task-specific data metadata (path, labels...). By default call :obj:`fsc_for_multi_classification` with :code:`**prepare_data` Args: prepare_data (dict): same in :obj:`default_config`, arguments for :obj:`fsc_for_multi_classification` target_dir (str): Parse your corpus and save the csv file into this directory cache_dir (str): If the parsing or preprocessing takes too long time, you can save the temporary files into this directory. This directory is expected to be shared across different training sessions (different hypers and :code:`target_dir`) get_path_only (str): Directly return the filepaths no matter they exist or not. Returns: tuple 1. train_path (str) 2. valid_path (str) 3. test_paths (List[str]) Each path (str) should be a csv file containing the following columns: ==================== ==================== column description ==================== ==================== id (str) - the unique id for this data point wav_path (str) - the absolute path of the waveform file labels (str) - the string labels of the waveform, separated by a ';' ==================== ==================== The number of the label columns can be arbitrary. """ return fsc_for_multi_classification( **self._get_current_arguments(flatten_dict="prepare_data") )
[docs] def build_encoder( self, build_encoder: dict, target_dir: str, cache_dir: str, train_csv_path: str, valid_csv_path: str, test_csv_paths: list, get_path_only: bool = False, ): """ Build the encoder (for the labels) given the data metadata, and return the saved encoder path. By default generate and save a :obj:`s3prl.dataio.encoder.CategoryEncoders` from all the columns prefixing :code:`label` from all the csv files. Args: build_encoder (dict): same in :obj:`default_config`, no argument supported for now target_dir (str): Save your encoder into this directory cache_dir (str): If the preprocessing takes too long time, you can save the temporary files into this directory. This directory is expected to be shared across different training sessions (different hypers and :code:`target_dir`) train_csv_path (str): the train path from :obj:`prepare_data` valid_csv_path (str): the valid path from :obj:`prepare_data` test_csv_paths (List[str]): the test paths from :obj:`prepare_data` get_path_only (bool): Directly return the filepaths no matter they exist or not. Returns: str tokenizer_path: The tokenizer should be saved in the pickle format """ encoder_path = Path(target_dir) / "encoder.pkl" if get_path_only: return encoder_path train_csv = pd.read_csv(train_csv_path) valid_csv = pd.read_csv(valid_csv_path) test_csvs = [pd.read_csv(path) for path in test_csv_paths] all_csv = pd.concat([train_csv, valid_csv, *test_csvs]) multilabels = [ [label.strip() for label in multilabel.split(";")] for multilabel in all_csv["labels"].tolist() ] encoder = CategoryEncoders( [single_category_labels for single_category_labels in zip(*multilabels)] ) with open(encoder_path, "wb") as f: pickle.dump(encoder, f) return encoder
[docs] def build_dataset( self, build_dataset: dict, target_dir: str, cache_dir: str, mode: str, data_csv: str, encoder_path: str, frame_shift: int, ): """ Build the dataset for train/valid/test. Args: build_dataset (dict): same in :obj:`default_config`, no argument supported for now target_dir (str): Current experiment directory cache_dir (str): If the preprocessing takes too long time, you can save the temporary files into this directory. This directory is expected to be shared across different training sessions (different hypers and :code:`target_dir`) mode (str): train/valid/test data_csv (str): The metadata csv file for the specific :code:`mode` encoder_path (str): The pickled encoder path for encoding the labels Returns: torch Dataset For all train/valid/test mode, the dataset should return each item as a dictionary containing the following keys: ==================== ==================== key description ==================== ==================== x (torch.FloatTensor) - the waveform in (seq_len, 1) x_len (int) - the waveform length :code:`seq_len` class_ids (torch.LongTensor) - the encoded class ids. shape: (num_class, ) labels (List[str]) - the class name. length: num_class unique_name (str) - the unique id for this datapoint ==================== ==================== """ csv = pd.read_csv(data_csv) ids = csv["id"].tolist() audio_loader = LoadAudio(csv["wav_path"].tolist()) with open(encoder_path, "rb") as f: encoder = pickle.load(f) label_encoder = EncodeCategories( [ [label.strip() for label in multilabel.split(";")] for multilabel in csv["labels"].tolist() ], encoder, ) class Dataset: def __len__(self): return len(audio_loader) def __getitem__(self, index: int): audio = audio_loader[index] label = label_encoder[index] return { "x": audio["wav"], "x_len": audio["wav_len"], "class_ids": label["class_ids"], "labels": label["labels"], "unique_name": ids[index], } dataset = Dataset() return dataset
[docs] def build_batch_sampler( self, build_batch_sampler: dict, target_dir: str, cache_dir: str, mode: str, data_csv: str, dataset: Dataset, ): """ Return the batch sampler for torch DataLoader. By default call :obj:`superb_sid_batch_sampler` with :code:`**build_batch_sampler`. Args: build_batch_sampler (dict): same in :obj:`default_config` ==================== ==================== key description ==================== ==================== train (dict) - arguments for :obj:`FixedBatchSizeBatchSampler` valid (dict) - arguments for :obj:`FixedBatchSizeBatchSampler` test (dict) - arguments for :obj:`FixedBatchSizeBatchSampler` ==================== ==================== target_dir (str): Current experiment directory cache_dir (str): If the preprocessing takes too long time, save the temporary files into this directory. This directory is expected to be shared across different training sessions (different hypers and :code:`target_dir`) mode (str): train/valid/test data_csv (str): the :code:`mode` specific csv from :obj:`prepare_data` dataset: the dataset from :obj:`build_dataset` Returns: batch sampler for torch DataLoader """ def _build_batch_sampler( train: dict = None, valid: dict = None, test: dict = None ): if mode == "train": return FixedBatchSizeBatchSampler(dataset, **train) elif mode == "valid": return FixedBatchSizeBatchSampler(dataset, **valid) elif mode == "test": return FixedBatchSizeBatchSampler(dataset, **test) return _build_batch_sampler(**build_batch_sampler)
[docs] def build_downstream( self, build_downstream: dict, downstream_input_size: int, downstream_output_size: int, downstream_input_stride: int, ): """ Return the task-specific downstream model. By default build the :obj:`MeanPoolingLinear` model Args: build_downstream (dict): same in :obj:`default_config`, support arguments of :obj:`MeanPoolingLinear` downstream_input_size (int): the required input size of the model downstream_output_size (int): the required output size of the model downstream_input_stride (int): the input feature's stride (from 16 KHz) Returns: :obj:`AbsUtteranceModel` """ model = MeanPoolingLinear( downstream_input_size, downstream_output_size, **build_downstream ) return model
[docs] def build_task( self, build_task: dict, model: torch.nn.Module, encoder, valid_df: pd.DataFrame = None, test_df: pd.DataFrame = None, ): """ Build the task, which defines the logics for every train/valid/test forward step for the :code:`model`, and the logics for how to reduce all the batch results from multiple train/valid/test steps into metrics By default build :obj:`UtteranceMultiClassClassificationTask` Args: build_task (dict): same in :obj:`default_config`, no argument supported for now model (torch.nn.Module): the model built by :obj:`build_model` encoder: the encoder built by :obj:`build_encoder` valid_df (pd.DataFrame): metadata of the valid set test_df (pd.DataFrame): metadata of the test set Returns: Task """ return UtteranceMultiClassClassificationTask(model, encoder)