beam_decoder#
(s3prl.nn.beam_decoder)
The beam search decoder of flashlight
- Authors:
Heng-Jui Chang 2022
BeamDecoder#
- class s3prl.nn.beam_decoder.BeamDecoder(token: str = '', lexicon: str = '', lm: str = '', nbest: int = 1, beam: int = 5, beam_size_token: int = -1, beam_threshold: float = 25.0, lm_weight: float = 2.0, word_score: float = -1.0, unk_score: float = -inf, sil_score: float = 0.0)[source][source]#
Bases:
object
Beam decoder powered by flashlight.
- Parameters:
token (str, optional) – Path to dictionary file. Defaults to “”.
lexicon (str, optional) – Path to lexicon file. Defaults to “”.
lm (str, optional) – Path to KenLM file. Defaults to “”.
nbest (int, optional) – Returns nbest hypotheses. Defaults to 1.
beam (int, optional) – Beam size. Defaults to 5.
beam_size_token (int, optional) – Token beam size. Defaults to -1.
beam_threshold (float, optional) – Beam search log prob threshold. Defaults to 25.0.
lm_weight (float, optional) – language model weight. Defaults to 2.0.
word_score (float, optional) – score for words appearance in the transcription. Defaults to -1.0.
unk_score (float, optional) – score for unknown word appearance in the transcription. Defaults to -math.inf.
sil_score (float, optional) – score for silence appearance in the transcription. Defaults to 0.0.
- get_tokens(idxs: Iterable) LongTensor [source][source]#
Normalize tokens by handling CTC blank, ASG replabels, etc.
- Parameters:
idxs (Iterable) – Token ID list output by self.decoder
- Returns:
Token ID list after normalization.
- Return type:
torch.LongTensor